Entendendo porque 0,999... é igual a 1

COMPARTILHE:

Não é mágica.

Quando começa os estudos de dízimas periódicas, geralmente no 9º ano, umas das curiosidades mais discutidas pelos próprios alunos, é a respeito do número $0,999999999999999999...$ E aí professor, porque esse número é igual a $1$?

Uma das situações mais comuns que os professores mostram (não confunda com demonstram) aos seus alunos, para justificar esse fato, é aquele famoso cálculo trivial.

Para mais argumentos acesse o artigo 10 argumentos matemáticos de que 0,999... é igual a 1.

Entendendo porque 0,999... é igual a 1

Acompanhe.

Assim: 

Faça $X = 0,999...$

Se $X = 0,999...$, então $10.X = 9,999...$ (aplicando o princípio multiplicativo)

Agora, subtraindo a primeira equação da segunda, obtemos:

$9.X = 9,000...$

Resolvendo essa simples equação chegamos em:

$X=1$.  Mas $X$ não era igual a $0,999...$?

Um outro argumento que podemos usar para mostrar esse fato, é usando um outro número decimal como base de teoria.

Assim:  

O número $0,1111...=\cfrac{1}{9}$, certo?

Multiplicarmos ambos os lados por $9$, obtemos $0,9999 ... =1$.

Você pode também mencionar que com outros argumentos semelhantes, a cada número racional com uma expansão decimal. 

Por exemplo, o número racional $\cfrac{20}{7}$ pode ser representado como $0,35$, que é o mesmo que $0,35000...$ ou $0,34999...$.

Muitos alunos não entendem bem esses argumentos e acham que é algum tipo de mágica, sem fundamento algum, uma vez que eles não têm uma ideia clara do que uma expansão decimal representa. Não acredito que um número pode ter duas representações diferentes.

Podemos tentar esclarecer isso explicando o que significa uma representação decimal. Lembre-se que o dígito em cada lugar de uma expansão decimal é associado com uma potência (positiva ou negativa) de 10. O espaço ocupado pelo k-ésimo à esquerda do decimal corresponde à potência $10^{k}$. O espaço pelo k-ésimo à direita do decimal corresponde à potência $10^{-k}$ ou ${ \left( \cfrac { 1 }{ 10 }  \right)  }^{ k }$.

Se os dígitos em cada lugar são multiplicados por sua potência correspondente de $10$, e, em seguida, somados, obtém-se o número real que é representado por essa expansão decimal.

Assim, a expansão decimal $0,9999...$ na verdade, representa a soma infinita $\cfrac { 9 }{ 10 } +\cfrac { 9 }{ 100 } +\cfrac { 9 }{ 1000 } +\cfrac { 9 }{ 10000 } +\cdot \cdot \cdot$ que pode ser resumido como uma série geométrica para obter o número $1$. Note-se que tem uma representação decimal $1,000...$ que é apenas $1+\cfrac { 0 }{ 10 } +\cfrac { 0 }{ 100 } +\cfrac { 0 }{ 1000 } +\cfrac { 0 }{ 10000 } +\cdot \cdot \cdot$ por isso, se percebe que as expansões decimais são apenas um código para uma soma infinita, pode ser menos surpreendente que duas somas infinitas pode ter a mesma soma.

Portanto $0,999... = 1$.

Isto é Matemática

O primeiro episódio da 10ª temporada trata justamente deste tema. Se não conhece o canal, não deixe de assistir o vídeo logo abaixo e se inscrever.

COMENTÁRIOS

BLOGGER: 5
  1. O que me preocupa e muito é que os alunos confundem muitas vezes aproximações com números exatos. Explicado assim dessa forma como uma soma infinita, tudo bem. É como o caso do PI, para muitos ele é 3,14 mas poucas pessoas não preocupam com o fato deste ser um número irracional.

    ResponderExcluir
    Respostas
    1. É verdade! E além do mais confundem sobre as expansões decimais.

      Excluir
  2. Porque quando eu boto 9,9999 na calculadora e subtraio 0,9999 dá 8,9991??

    ResponderExcluir
    Respostas
    1. Isso depende da calculadora que estiver usando.

      Excluir
    2. vc tem q colocar o mesmo numero de casas dps da virgula nos dois, pq ali ta representando uma dizima

      Excluir

Nome

android,27,aplicações matemáticas,119,Aprender Matemática,30,Artigo Convidado,50,Biologia,1,blog,49,Blogger,3,Camisetas de exatas,3,Carl Sagan Day,1,chrome,9,cinema,12,Concursos,3,Curiosidades matemáticas,102,curso online,10,Desafios matemáticos,44,destaque,1,determinantes,3,Dia do Estudante,1,Dia do Professor,10,Diario Escolar Digital,5,Dica de economia,4,dica de livro,32,Dica para professor,43,divulgação,60,E-book,4,Editorial,21,educação,106,ENEM,1,ensino,139,Entrevista,8,eventos,19,excel,24,extensões,11,Facebook,8,feira do livro,4,firefox,2,frações,6,funções,9,geogebra,78,GifsMatemáticos,5,google,42,história da matemática,40,humor,58,IMO,2,InternetJusta,1,iOS,19,iPad,7,iPhone,3,jogos,27,Katex,1,Latex,20,LibreOffice,11,linux,49,Livro GeoGebra,5,Mapa Mental,1,Matemática e profissões,20,Matemático do dia,27,Materiais GeoGebra,23,Mathjax,2,Netflix,7,Noticias,132,OBMEP,1,One Strange Rock,1,Papel milimetrado,4,Pi Day,16,piadas matemáticas,13,PodCast,4,política,3,premiações,7,professor,6,promoção,13,Quiz,22,Resenhas de Livros,1,Resposta Desafios,1,Sebastião Vieira,22,software,18,Software Livre,50,Tabuada,5,TCC,17,Telegram,8,TexMath,4,TIC,32,Top artigos,4,ubuntu,15,Videos,104,wallpapers matemáticos,23,Widgets,26,windows,41,wolfram alpha,30,Youtube,16,
ltr
item
Prof. Edigley Alexandre - O blog para professores e estudantes de Matemática: Entendendo porque 0,999... é igual a 1
Entendendo porque 0,999... é igual a 1
Não é mágica.
https://3.bp.blogspot.com/-nH9pndDedeU/V4ff0g3aR_I/AAAAAAAAqQA/5taI8kDG66M7wYVuQXNCI3b-3G4kEqPswCLcB/s1600/entendo-porque-0%252C999...e-eigual-a-1.png
https://3.bp.blogspot.com/-nH9pndDedeU/V4ff0g3aR_I/AAAAAAAAqQA/5taI8kDG66M7wYVuQXNCI3b-3G4kEqPswCLcB/s72-c/entendo-porque-0%252C999...e-eigual-a-1.png
Prof. Edigley Alexandre - O blog para professores e estudantes de Matemática
https://www.prof-edigleyalexandre.com/2011/10/entendendo-porque-0999-e-igual-1.html
https://www.prof-edigleyalexandre.com/
https://www.prof-edigleyalexandre.com/
https://www.prof-edigleyalexandre.com/2011/10/entendendo-porque-0999-e-igual-1.html
true
125900602153146940
UTF-8
Carregar mais posts Não foram encontrados posts VER TODOS Leia mais Responder Cancelar resposta Delete Por Início PÁGINAS POSTS VER TODOS RECOMENDADOS PARA VOCÊ CATEGORIA ARQUIVO PESQUISE TODOS OS POSTS Não foi encontrada nenhuma correspondência de postagem com sua solicitação VOLTAR Domingo Segunda Terça Quarta Quinta Sexta Sábado Dom Seg Ter Qua Qui Sex Sáb Janeiro Fevereiro Março Abril Maio Junho Julho Agosto Setembro Outubro Novembro Dezembro Jan Fev Mar Abr Maio Jun Jul Ago Set Out Nov Dez agora mesmo 1 minuto atrás $$1$$ minutes ago 1 hora atrás $$1$$ hours ago Ontem $$1$$ days ago $$1$$ weeks ago mais de 5 semanas atrás Seguidores Seguir ESTE CONTEÚDO PREMIUM ESTÁ BLOQUEADO PASSO 1: Compartilhar em uma rede social PASSO 2: Clique no link da sua rede social Copiar todo o código Selecioinar todo o código Todos os códigos foram copiados para a área de transferência Não é possível copiar os códigos / textos, pressione [CTRL] + [C] (ou CMD + C com Mac) para copiar